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Sandpile models and random walkers on finite lattices
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Abelian sandpile models, both deterministic, such as the Bak, Tang, Wies¢Bféld) model[P. Bak, C.
Tang, and K. Wiesenfeld, Phys. Rev. Léi9, 381 (1987)], and stochastic, such as the Manna md&e5.
Manna, J. Phys. 24, L363(1991)], are studied on finite square lattices with open boundaries. The avalanche
size distributionP (n) is calculated for a range of system sizesThe first few moments of this distribution
are evaluated numerically and their dependence on the system size is examined. The sandpile models are
conservative in the sense that grains are conserved in the bulk and can leave the system only through the
boundaries. It is shown that the conservation law provides an interesting connection between the sandpile
models and random-walk models. Using this connection, it is shown that the average avalancfre sitces
the BTW and Manna models are equal to each other, and both are equal to the average path length of a random
walker starting from a random initial site on the same lattice of &iz&his is in spite of the fact that the
sandpile models with deterministi@TW) and stochasti¢Manna toppling rules exhibit different critical
exponents, indicating that they belong to different universality classes.
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[. INTRODUCTION closed system$31-33. The crossover between the two
classes was also studig€8H]. In the case of directed models
Sandpile models have been studied extensively in the pagt was shown analytically that deterministic and stochastic
fifteen years as a paradigm of self-organized criticalitymodels belong to different universality clas$ds35,36.
(SOQ [1-3]. SOC provides a useful framework for the In this paper we present a connection between the Abelian
analysis of driven nonequilibrium systems which dynami-sandpile models and random walkers on finite lattices, which
cally evolve into a critical state. At the critical state theseis a result of the conservation laws. In the sandpile models
systems exhibit avalanche dynamics with long-range spatiadach avalanche starts with the addition of one grain. The
and temporal correlations, which resembles the behavior ahodels are conservative in the sense that grains are con-
equilibrium critical points. In sandpile models, defined on aserved in the bulk of the system and can leave it only
lattice, grains are deposited randomly until the height athrough the boundaries. It is thus clear that under steady state
some site exceeds the threshold, thus becoming unstable. Thenditions, the average number of grains leaving the system
unstable site is toppled and grains are distributed between ifger avalanche is also 1. Here, the avalanche size is defined as
nearest neighbors, which may become unstable too, resultithe number of hops of grains that are toppled from unstable
in an avalanche. These models were found to be self-drivesites during an avalanche. The avalanche size is thus equal to
into a critical state in which the avalanche sizes follow athe number of toppling event®r relaxationg of unstable
power-law distribution. The critical state, which can be char-sites during the avalanche times the number of grains that
acterized by various critical exponents and scaling functionstopple in each event of this type. We show that in both the
was studied using both theoreti¢ddl—11] and numerical ap- BTW and Manna models, each grain moves like a random
proached12—-20. These studies stimulated an effort to ex- walker, starting at the site in which it was deposited, until it
amine the utility of the SOC framework to the understandingfalls off the boundaries. Using these features we show that
of empirical phenomena such as earthquakes avalanchestime average avalanche size is the same for the two models.
granular flow and mass extinctioh21]. Moreover, it is equal to the average path length of a random
To examine the dependence of the critical state on various/alker starting from a random site on the same lattice, until
properties of the models, different sandpile models havét falls off the edge.
been introduced. These include the stochastic model intro- In order to demonstrate these properties we examine the
duced by Mannd22]. The issue of universality has been avalanche size distribution of the Abelian sandpile models
studied. Analytical studig)23,24] and numerical simulations and the distribution of the path length of a random walker on
[25] indicated that the Manna model, which is stochasticfinite square lattices. The average path length of a random
belongs to the universality class of the original model intro-walker on a lattice of sizé is calculated exactly using a
duced by Bak, Tang, and WiesenfdBTW) which is deter- method proposed by Walsh and Kozg#7,38. The entire
ministic (namely, has a deterministic toppling rulédow-  distribution of the path lengths of random walkers starting at
ever, numerical simulations using an extended set of criticatandom sites on the finite lattice is also calculated using a
exponents showed that deterministic and stochastic modetgelated method proposed by So[&9]. The results are also
exhibit different scaling properties and thus belong to differ-compared to direct numerical simulation of the random walk.
ent universality classg26—28. Further support for this re- The avalanche size distribution of the Abelian sandpile mod-
sult was obtained using multifractal analy$29], moment els is obtained from direct numerical simulations as well as
analysis[30], as well as studies of the sandpile models asfrom an exact formula introduced by Dhi].
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The paper is organized as follows. The sandpile model§or some of the models the results fgrexhibit a significant
are described in Sec. Il. The distributions of the path lengthslependence on the system size. The critical expongnts
of random walkers on finite lattices and their averages aréurn out to depend on the vectAE to be termedelaxation
studied in Sec. Ill. The connection between the sandpilerector For a square lattice with relaxation to nearest neigh-
models and random walkers is examined in Sec. IV. Thebors it is of the formAE=(Ey,Eg,Eg,Ey), Where Ey,
simulations and results are given in Sec. V, followed by aEg, Eg, andE,y are the amounts transferred to the northern,

discussion in Sec. VI and a summary in Sec. VII. eastern, southern, and western nearest neighbors, respec-
tively. The average avalanche size on a lattice of &izs
Il. THE SANDPILE MODELS given by

)

Consider a sandpile model ondadimensional cubic lat-
tice of linear sizel.. Each sitei is assigned a dynamic vari- (L= ZO nP.(n). 6)
able E(i) which represents some physical quantity such as "=

energy, grain density, stress, etc. A configurat{@{i)} iS  The sandpile models considered in this paper are conserva-
calledstableif for all sites E(i)<E;, whereE is a thresh- e in the sense that the grains are conserved in the bulk and
old value. The evolution between stable configurations is bysan leave the system only through the open boundaries.
the following rules. o When an avalanche reaches a boundary site, some energy is
(i) Adding energy. Given a stable configuratif(j)} we  transferred out of the systefnamely, dissipation takes place
select a site at random and increadg(i) by some amount gt the boundarigsThe critical state is reached spontaneously
JE. When an unstable configuration is reached fileis  in the limit in which the random addition of energgr drive)
applied. is infinitely slow (practically it means that the next energy
(i) Relaxation(or toppling rule. If E(i)= E., relaxation  unit is added only after the previous avalanche is completed
takes place and energy is distributed in the following way: This state is characterized by a power-law distribution of
avalanche sizefEq. (4)]. In the critical state the added en-
; . ergy SE per avalanche, is balanced, on an average, by the
E(—E®D ze: AE(e), energy that flows out through the boundaries. Therefore, the
average amount of energy leaving the system per avalanche
E(i+e)—E(i+e)+AE(e), (1) is JSE.
In the BTW model,E.=4, SE=1, andAE=(1,1,1,1).
wheree are a set of vectors from the sitéo some neighbors. Since AE is a constant, this model is clearly deterministic.
As a result of the relaxatiorE(i+€) for one or more of Note that sinceAE is independent oE(i), if an active site
the neighbors may reach or exceed the thresliQld The  with E(i)>E, is toppled, it remains nonempty after the top-
relaxation rule is then applied until a stable configuration ispling event had occurred. A useful way to analyze the BTW
obtained. The resulting sequence of topplings is an avalanchaodel is by its toppling matriXA, which for anL X L lattice
that propagates through the lattice. is a matrix of sizeL?xL2. Consider a pair of sites
Avalanches can be characterized by their size. Thessize =(i,i,), j=(jx.j,) and denotei=Li,+i,, j=Lj,+]j,
of an avalanche is the total number of toppling events thajvhere O<iy,iy,jx,jy<L—1. The matrix elementA;
occurred during the course of the avalanche. In the modelyherei #j is the number of grains given to sitevhen site
studied here the number of grains that topple from an unj topples(up to a minus sigh The number of grains leaving
stable site i€£.= X AE(€). Throughout the rest of the paper sitei in such an event is given by the diagonal elemepyt.

we will denote the avalanche size by Therefore, the toppling matrix is
n=E.s, (2 4, i=j
namely, by the number of hops of individual grains that take A=y L and J_ are nearest-neighbor siteg)
place during the avalanche. This will allow us to consider 0 otherwise.
models with different values d&, on a common footing. ) . . . .
The avalanche size distribution is denoted By(n), n Consider the toppling of a given sitelt can be described
=0,1, ..., namely, the probability of a randomly chosen by
S?Qaelﬁnbc;e to be of siza. The normalization condition is E()—E() Ay, %
" for all sites;j.
2 P (n)=1 3) In the class of stochastic sandpile models, introduced by
e Manna, a set of neighbors is randomly chosen for relaxation

[22] once a site becomes unstable. Such models can be speci-
Numerical simulations show that the avalanche size disfied by a set of relaxation vectors, each vector is assigned

tribution for a lattice of sizeL has the power-law form with a probability for its appearance. There are several mod-
els in this class. One of them is a two-state model \ith
P.(n)~n~"t, n=1.2,.... (4) =2 and two relaxation vector€l,0,1,0 and (0,1,0,2 each
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one applied with a probability of 1/10]. Another two-state
model includes six relaxation vectors, namel{,1,0,0,
(1,0,0,3, (0,1,1,0, (0,0,1,3, (1,0,1,0, and (0,1,0,3, each 3 2 3
one applied with a probability of 1/626]. In this paper we
consider a two-state model in which each of the two grains
of an unstable site is toppled randomly to one of the four 2 1 2
neighbors(with probability 1/4 to each directionThere is

no correlation between the directions picked for these two
grains. The set of relaxation vectors includes all the ten pos-

sible vectorsAE of integer components for whicBy+ Eg 3 2 3
+Ew+ Eg=2. Each of the six vectors of the previous model
appears with probability 2/16, while each of the four vectors g 1. The square lattice of sizex®, in which the sites are
(2,0,0,0, (0,2,0,0, (0,0,2,0, and (0,0,0,2 appears with  grouped and indexed according to the symmetry of their positions.
probability 1/16. This model will be called the unrestricted The indexing starts from the central site and outwards.

two-state Manna model.

The average avalanche sige) for the BTW model on a aries the walker must pass through at least one of the nearest
lattice of sizeL was calculated exactly by Dhd6]. He  neighbors of the sité, there is a relation betwegm;) and
showed that the matrix elemem"jl represents the average the corresponding averages for its nearest neighbors of the
number of toppling events taking place at gitghen a grain  form
starts an avalanche after being deposited atisigy sum-
ming all the elements oA ~?, using the eigenvectors and (m)=3(ni)+(ni )+ (i) +(ni ) +1. (17)
eigenvalues ofA [41] it was found that

This set ofL? coupled linear equations can be written in a
1 coth,coth, matrix form as

(n)= 26+ S, ®
L2(L+1)2 K S|n26k+sm20| %A(n)zl, (12

where where the matrixA is identical to the toppling matrix of the
BTW model, given in Eq(6). The vectorn) consists of the
== (99  L? componentgn);=(n;), wherei= (iy,iy) andi=Li,+i,
2(L+1) (i=0,1,...L2—1). TheL2-dimensional vectot is given
by 1=(1,1,...,1).

In order to reduce the number of equations we shall use
the symmetry properties of the square lattice that has one
horizontal, one vertical, and two diagonal reflection axes.
Any two sites with the same symmetry properties are called
sites of the same “type.” Due to the symmetry it is sufficient

lll. RANDOM WALKS ON FINITE LATTICES to examine the sites in the triangle bounded by the vertical

Consider a random walker on a square lattice of ize axis from the center upwards and by the diagonal axis from
The walker starts at a random initial site (i, ,i,), where the center to the upper right corngig. 1). In this triangle
0<i,,i,<L—1. At each step the walker has four possibleth_ere is one site of each type. The number of sites in the
moves, to one of the sitdg=(i,+1i,), iy =(ix—1i,), iy triangle is
=(ix,iy*t1), andip=(iyx,iy—1), each picked with equal

mm
0

for any integem, and the summation ovél is over all odd
integers kk,I<L. The dependence dih) on the system
size was found to bén)~L2. This analysis was recently
extended to dissipative Abelian modg#2].

probability. The boundaries are open, and thus a random N:W, (13)
walker starting at any site {,i,) will eventually fall off the 8

edge[37,38. The number of moves it will make depends on .

the location of the initial site as well as on the particularWhenL is odd, and

realization of the random moves generating the path of the L(L+2)

given walker. Therefore, there is a probability distribution = (14)

pi(n), wheren=1,2 . .. o, that a random walker starting at 8
site (iy,iy) will fall off the edge aftem moves. We will first

calculate the average of this distribution given by whenL is even. TheN linear equations fotn); are of the

form
[ee) 1 B

()= np(n). (10 D=1 19
n=1

whereD is anNX N matrix. The matrix elements d are

The boundary conditions are given kg;)=0 for sites be- . o

yond the edge of thé X L lattice, namely, those for which D .= 4-f(i), =] 16

ix=—21orL,oriy=—1 orL. Since on its way to the bound- DL =1GL)), T # ],
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wheref(i,j) is the number of sites of typethat are nearest corner sites, for whichp;(1)=1/2. For all other sitep;(1)

neighbors to a site of type ForL=3, Eq.(15) takes the =0Q. The distributionp;(n), n=2, ..., iscalculated recur-
form sively using Eq.(22) for all sites, starting ah=2 and in-
B creasingn by 1 after each scan of the lattice. The average
1 1 0 . .
path length(n) of a random walker starting at a random site
B E 1 1 (n)1 1 is then obtained from Eq$19) and (21).
4 2 (m2|={1], (17)
1 ()3 1
0 ) 1 IV. THE CONNECTION BETWEEN THE SANDPILE

MODELS AND RANDOM-WALK MODELS

and its solution can be easily found to bén)
=(4.5,3.5,2.75). Now, having explicit values for the);'s,
the average path lengtim) of a random walker that starts at
a random site on the83 lattice is

Consider a grain deposited at a random site in the unre-
stricted two-state Manna model. It will initiate a small or a
large avalanche and will typically stay on the lattice for
many subsequent avalanches until it will fall off the edge.

Most of this time the grain is alone in its site. Whenever it
(n)y= (ny) +4(n;) +4{n;) —3.277 . . (18 will share the site with another grain, both of them will
9 topple randomly(and independentlyto nearest-neighbor
sites. The path of the grain on the lattice is, in fact, a random
walk since there is no correlation between one move to an-
other[43]. This path starts at the site into which the grain
was deposited and ends at the edge site through which it
leaves the system. The different walkers are uncorrelated,
since the directions chosen by the two grains that topple
from an unstable site are independent. The only correlation is
between the times that different walkers make their random
P.(n)= i 2 pi(n). (19) moves. This temporal correlatiqn appears because two walk-
L2 5 ers need to occupy the same site in order to move.
This property, that the path of each grain in the sandpile
Note that for the random-walk modé®, (n) is defined only  model is a random walker, is not limited to the unrestricted
for n=1, because the random walker must make at least ongvo-state Manna model. It is a general property of the
move in order to fall off the edge. The normalization condi- conservative-Abelian models, in which the grains are dis-
tion will thus take the form crete entities. It is thus a common property of models that
belong to both the deterministic and stochastic universality
classes. Consider, for example, the BTW model. It is conve-
nient to consider the grains as distinguishable particles by
naming each one of them according to the running number
The moments of this distribution are given by representing the order of their deposition into the system.
When an unstable site topples, we will pick the grain that
entered this site first, and choose randomly one of the four
<”q>L:n§1 niP(n). 2D directions (,E,S,W) for it to move. For the second grain
we will choose randomly among the three remaining direc-
The average path lengtfirst moment is given by Eq.(21)  tions, and so on for the third and fourth grains. It is clear that
with q=1, the second moment by=2, and so on. The there is no correlation between the directions of consecutive
calculation ofp;(n) is done recursively starting from the moves of each grain and no bias. Therefore, each grain fol-
boundaries. The probability that a walker starting at site lows a path of a random walker. Unlike the unrestricted two-

The probability distributiorp;(n) of a walker starting at
sitei to fall off the edge aften moves can also be calculated
[39]. One can then averagg(n) over all lattice sites and
obtain the probability distributio (n), n=1,2, ... ,that a
walker starting at a random site on the lattice will fall off the
edge aftem steps. This probability is given by

n; P.(n)=1. (20)

o

will fall off the edge aftem steps is given by state Manna model, in the BTW model there is a correlation
between the directions of different grains that topple from
pi(n)= %[piR(n— 1)+ piL(n— 1)+ piU(n— 1)+ piD(n— 1], the same site, since they cannot move in the same direction.
(22) Each avalanche in the sandpile models starts with a new

grain deposited randomly. Therefore, on an average, each
namely, it is the average over the four nearest neighbors, afvalanche drops one grain off the edge. Since the grains
the probabilities that a walker starting in one of them will fall follow random-walker paths from the random initial site to
off the edge aften—1 steps. The boundary conditions are an edge site, the average number of hops that take place in a
pi(n)=0 wherei,=—-1L ori,2=—1L andn=1,2, ..., single avalanche must be equal to the average number of
reflecting the fact that these indices represent sites that aggeps, which is required for a random walker deposited ran-
already over the edge. The initial conditions for the recursivedomly on the lattice to reach the edge. We thus conclude that
procedure for the calculation gb(n), n=1,2,..., are the average avalanche size of a sandpile model on a lattice of
given by p;(1)=1/4 for all the edge sites, except for the size L is the same for the BTW and Manna models, and
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FIG. 2. The average avalanche size for the BTW and_Manna FIG. 3. Scaling function of the path-length distribution of a
models, and the average length of the random-walk p@iasting . 4om walk on finite lattices of sizds=32, 64, 128, 256, and
from randpm s_lte)son a finite square I_at_tlce with open boundaries, 512. Heren is the walker length(n), is its average, an@(n), is
vs the Iattlce_ sizé. For any value ot it is found that the average the probability to obtain a path of lengthon a lattice of sizé.. The
avalanche sizes and the average path lengths are all equal. five graphs coincide with each other. The slope in the linear range is

—1/2, as expected for the random walk.
equal to the average path length of a random walker depos-
ited randomly on the same lattice. method[39]. The calculation was done for square lattices of
sizesL =32, 64, 128, 256, and 512. To obtain a scaling func-
tion we rescaledh for each system size by the average path
length{n)_ . The scaling functioP(n/(n})_ ) =(n)_ P (n) is

To examine the connection between the random-wallshown in Fig. 3 on a double logarithmic scale. The scaling
model and the sandpile models on finite lattices, we havéunction exhibits a linear range, up to an upper cutoff around
performed numerical simulations of both systems. Directn/(n)_=1. The slope of the linear range turns out to be
simulations of the random-walk model were performed on a=—1/2. This function can be considered in the framework
square lattice of size with open boundaries. In each run the of first passage problems of a random walk on a finite lattice
walker started at a random site on the lattice. The randoni44].
walk path was generated until the walker fell off the edge. The avalanche size distributions for the BTW and Manna
The path length, namely, the numberof moves it made models were obtained from direct numerical simulations for
from the initial site to the edge, was recorded. From thislattice sized =32, 64, 128, 256, and 512. The rescaled dis-
data, the distribution of path length® (n) was generated tribution functions are shown in Fig(#@ for the BTW model
and its averagén)_ was calculated. The average), was and in Fig. 4b) for the Manna model. In both cases the data
also calculated using the Walsh-Kozak meth8d,38. The  collapse is not complete, due to the finite size dependence of
distribution P (n) was also calculated using the Soler the critical exponent . Fitting the data fol. =512 to Eq.
method[39] and({n), was extracted from it. Direct simula- (4) we obtain thatr, =1.12+0.02 for the BTW model and
tions of the BTW and Manna models were performed, fromr =1.27+0.02 for the Manna model, in agreement with pre-
which the avalanche size distributions were obtained. The&ious resultd22,27,3Q.
average avalanche size for each model was calculated as aThe first three moments of the distribution of path lengths
function of the lattice siz&. The average avalanche size for of the random walk vd. are shown in Fig. 5. The results
the BTW model was also calculated using Dhar’s formulawere obtained both by direct simulation and by calculating
[Eqg. (8)]. The values of(n) vs L obtained for both the P (n) using the Soler methofB9]. Fitting these graphs to
random-walk and sandpile models are shown in Fig. 2. Thepower laws inL we find that(n9), ~L2% (the slopes of the
all coincide perfectly, except for some slight fluctuations inbest linear fits are 1.980.04, 3.97-0.06, and 5.960.08
the direct simulation data for the larger valueslofThis  for q=1, 2, and 3, respectively
confirms the connection between the random-walk and sand- For the sandpile models, in the large system limit, the first
pile models. Fitting(n)_ vs L to a polynomial function we moment of the avalanche size distribution scales ik

V. SIMULATIONS AND RESULTS

obtain that(n), =alL?+bL, wherea=0.14 ando=0.56. ~L2. Higher moments are expected to scale like
While the averages are found to be the same for the sand-
pile models and the random-walk models, the distributions (n%) ~Lo@, (23

P_(n) turn out to be different. To calculate the distribution
P_(n) of the path lengths of random walkers starting fromwith o(q)>2q for q>2. The first three moments of the
random sites on a square lattice of sizeve used the Soler avalanches size distributions of the BTW and Manna models,
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2t ;?ga 1 of calculations using the Soler method. The slopes of the best linear
0256 fits are 1.980.04, 3.97-0.06, and 5.96 0.08, forq=1, 2, and 3,

®512 respectively.

butions. The results for the higher moments are in agreement
with those presented in Refi80,45.
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VI. DISCUSSION

Power-law distributions were observed in a wide variety
of natural systems as well as in economic systems, computer
networks, linguistics, and other fields. Some examples in-

4t

i . . .
-4 -2 o] 2 4

logo(n/{n}z)

FIG. 4. The rescaled avalanche size distributions for the BTW
model(a) and for the Manna modgb) for lattice sized =32, 64, Fomw model ¥
128, 256, and 512. It is observed that for the BTW model the slope sl X
exhibits some dependence bnThe slope for the best fit obtained
by linear regression for lattice size 512 correspondste1.12 ¥ —9
+0.02 for the BTW model, and =1.27£0.02 for the Manna
model.

20| x =3

logyo(n?)
Y
.’(

vsL, are shown in Fig. 6. The slopes of the best linear fits for
the BTW model ares(q)=1.98+-0.02, 4.68:0.04, and °| * * X
7.52+0.08 forq=1, 2, and 3, respectively. The slopes of * £ ¥
the best linear fits for the Manna model as€q)=1.97 * ‘ ‘
+0.02, 4.73:0.04, and 7.480.08 forg=1, 2, and 3, re- %0 1 2 3 4
spectively. These linear fits were obtained for lattice sizes in logyy L
the range 64 L=<1024. The results for the first moment are _ o
identical (within the error barsfor the two models, and co- FIG. 6. The first three moments of t_he avalanches sizes in the
incide with the results for the random-walk model, and thqu.aTW apd Manna models, vs system size. The slopes of the best
. . . P inear fits for the BTW model are 1.980.02, 4.68-0.04, and
confirm the conclusions of the analysis above. Surprisinglyy s5. g gg forq=1, 2, and 3, respectively. The slopes of the best
the values ofo(q) for the BTW and Manna models are |ineqar fits for the Manna model are 1.9D.02, 4.730.04, and
approximately the samewithin the error barg also forq  7.48+0.08 forq=1, 2, and 3, respectively. The results for the first
=2 and 3. This is in spite of the fact that the avalanche sizgnoment are the same for the two models and coincide with the
distributions of the two models are characterized by differentandom-walk model. The results for higher moments of the two
exponentsr, . This behavior has to do with deviations from models are not identical, although the differences are small. They
the power-law behavior near the upper cutoffs of the distri-both are very different from the random-walk results.
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clude the energy distribution between scales in turbulence Note that Eq(29) predicts significantly different values of
[46], the distribution of earthquake magnitudd3], the dis-  ¢(q) for the BTW and Manna models, due to the difference
tribution of city populationd48,49, the distribution of in- in the values ofr_ for the two models. On the other hand,
come and wealth50-53, the distribution of the number of Fig. 6 shows nearly identical values @fq), q=2,3 for the
links pointing to sites in the Intern¢b4,55, and the distri-  two models. The fact that these two moments coincide seems
bution of the frequency of appearance of words in te48. g pe due to the deviations from power-law behavior near the

A common feature of such systems is that they consist of pner cutoffs. The effect of these deviations is significant for
large number of elementary degrees of freedom that mteracpr'igh moments.

with each other in a complex way. Power-law distributions

typically appear when these interactions give rise to Iong]an

range correlations with no characteristic length scale.
Consider a power-law distribution of the form

Recently, multifractal scaling was observed in the ava-
che size distribution of the BTW modg29,56,57. This

indicates that a finite size scaling analysis of the form of Eq.
(24) is not sufficient for describing the scaling behavior of

P.(N)=A(L)n" " (24) the BTW model, although it was found to apply in the case
of the Manna mod€]29,56,51.
limited to the range betweem., (L) and ny,(L). For sim- Exponentsr_in the range ¥ 7 <2 were observed em-

plicity we will assume that the lower cutoff is fixed to pirically in the distribution of earthquake magnitudes. Many
Nmin(L)=1. As in the case of the sandpile models, we will other systems exhibit values of in the range 2 7 <3. In
assume that the upper cutoff is limited by the system kize these systems the first moment is kept finite in the infinite
and thatn,,(L)— whenL—o. The probability distribu- system limit, while the second moment that characterizes the

tion P (n) should satisfy the normalization condition fluctuations in the system diverges. Consider, for example, a
directed graph model describing an Internet-like network.
J”maX(L)P (nydn=1 (25) Each node in the graph has a fixed numibef links pointing
Nmin(L) - ' outwards to other nodes. The graph is constructed such that

the probability of each node to receive links from newly
namely, A(L)=(1— r,_)/(ni];}—l). In order forA(L) to  added nodes is proportional to the number of incoming links
converge to a finite nonzero valuelass =, the exponent,  that it already has. For a network that reached a sizke of

must satisfyr, >1 in the infinite system limit. The first mo- nodes, this process generates a power-law distribution of the

ment of the distribution, number of incoming links among the nodes. In the resulting
network the total number of outgoing links must be equal to
(N, = fnmax{L)nPL(n)dn, 26) the total number of incoming links. Since each node has
N outgoing links, the average number of incoming links per
node must bén)_ =r, independent of the size of the net-
thus takes the form work. Since the first moment of the distribution is kept finite,
s while the second moment divergeslas: », the exponent;
<n>L:(1— ) [Nmax L)t —1] 27 must be in the range<7, <3 in the infinite system limit.

22— 1) [Nmad L) =17 The notable feature of the network system is that the average
(n)_ of the power-law distribution of the incoming links is
We observe that for, >2 the first moment converges to a forced to remain constant and independent of the system
finite value in the infinite system limit. On the other hand, for Size. Sy_stems that h{:lvq thi§ feature are common. cher ex-
1<7 <2, the first momentn), diverges forL—o. We amples include the distribution of the number of citations to
thus obtain a connection between the behavior of the firsécientific papers. Each citation is a directed link from a
moment of the distribution in the infinite system limit and Newer paper to an older one. While the distribution of the
the range of values that the exponepntcan take. number of outgoing links per paper is narrow, the distribu-
For the sandpile models studied here the expomgigin  tion of incoming links is broad, and resembles a power-law

diverges according tény=al2 asL—=. The upper cutoff and wealths in western societies, which were found to ex-

Nmax CAN be expressed as a functionLoénd 7, : hibit power-law behavior, at least in the high income sectors,
with exponents in the range<2r <3. Here the argument is
a(2—7)|¥@ o not as easy to make. However, one may argue that the aver-
Mmao=| =77 L2/, (28)  age of these distributions must be connected to the average

productivity per worker. This productivity remains finite

Using this upper cutoff in the calculation of higher momentshen the size of the economy increases.

we obtain that in the infinite system limit they will scale

according to Eq(23) with
VIl. SUMMARY AND CONCLUSIONS

29ti-n) (29) Abelian sandpile modelghoth deterministic and stochas-

g - .
(@ 2—T tic) and random-walk models have been studied on finite
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square lattices with open boundaries. The avalanche siz& the random-walk paths starting from random sites on the
distributions of the sandpile models, as well as the distribusame lattice.

tions of the lengths of the random-walk paths were calcu-

lated using various methods. It was shown that, due to the ACKNOWLEDGMENTS
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