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Sandpile models and random walkers on finite lattices

Yehiel Shilo and Ofer Biham
Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

~Received 22 January 2003; published 10 June 2003!

Abelian sandpile models, both deterministic, such as the Bak, Tang, Wiesenfeld~BTW! model @P. Bak, C.
Tang, and K. Wiesenfeld, Phys. Rev. Lett.59, 381 ~1987!#, and stochastic, such as the Manna model@S.S.
Manna, J. Phys. A24, L363 ~1991!#, are studied on finite square lattices with open boundaries. The avalanche
size distributionPL(n) is calculated for a range of system sizes,L. The first few moments of this distribution
are evaluated numerically and their dependence on the system size is examined. The sandpile models are
conservative in the sense that grains are conserved in the bulk and can leave the system only through the
boundaries. It is shown that the conservation law provides an interesting connection between the sandpile
models and random-walk models. Using this connection, it is shown that the average avalanche sizes^n&L for
the BTW and Manna models are equal to each other, and both are equal to the average path length of a random
walker starting from a random initial site on the same lattice of sizeL. This is in spite of the fact that the
sandpile models with deterministic~BTW! and stochastic~Manna! toppling rules exhibit different critical
exponents, indicating that they belong to different universality classes.

DOI: 10.1103/PhysRevE.67.066102 PACS number~s!: 05.70.Jk, 05.40.Fb, 05.70.Ln
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I. INTRODUCTION

Sandpile models have been studied extensively in the
fifteen years as a paradigm of self-organized critica
~SOC! @1–3#. SOC provides a useful framework for th
analysis of driven nonequilibrium systems which dynam
cally evolve into a critical state. At the critical state the
systems exhibit avalanche dynamics with long-range spa
and temporal correlations, which resembles the behavio
equilibrium critical points. In sandpile models, defined on
lattice, grains are deposited randomly until the height
some site exceeds the threshold, thus becoming unstable
unstable site is toppled and grains are distributed betwee
nearest neighbors, which may become unstable too, resu
in an avalanche. These models were found to be self-dr
into a critical state in which the avalanche sizes follow
power-law distribution. The critical state, which can be ch
acterized by various critical exponents and scaling functio
was studied using both theoretical@4–11# and numerical ap-
proaches@12–20#. These studies stimulated an effort to e
amine the utility of the SOC framework to the understand
of empirical phenomena such as earthquakes avalanch
granular flow and mass extinctions@21#.

To examine the dependence of the critical state on var
properties of the models, different sandpile models h
been introduced. These include the stochastic model in
duced by Manna@22#. The issue of universality has bee
studied. Analytical studies@23,24# and numerical simulations
@25# indicated that the Manna model, which is stochas
belongs to the universality class of the original model int
duced by Bak, Tang, and Wiesenfeld~BTW! which is deter-
ministic ~namely, has a deterministic toppling rule!. How-
ever, numerical simulations using an extended set of crit
exponents showed that deterministic and stochastic mo
exhibit different scaling properties and thus belong to diff
ent universality classes@26–28#. Further support for this re
sult was obtained using multifractal analysis@29#, moment
analysis@30#, as well as studies of the sandpile models
1063-651X/2003/67~6!/066102~8!/$20.00 67 0661
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closed systems@31–33#. The crossover between the tw
classes was also studied@34#. In the case of directed model
it was shown analytically that deterministic and stochas
models belong to different universality classes@4,35,36#.

In this paper we present a connection between the Abe
sandpile models and random walkers on finite lattices, wh
is a result of the conservation laws. In the sandpile mod
each avalanche starts with the addition of one grain. T
models are conservative in the sense that grains are
served in the bulk of the system and can leave it o
through the boundaries. It is thus clear that under steady s
conditions, the average number of grains leaving the sys
per avalanche is also 1. Here, the avalanche size is define
the number of hops of grains that are toppled from unsta
sites during an avalanche. The avalanche size is thus equ
the number of toppling events~or relaxations! of unstable
sites during the avalanche times the number of grains
topple in each event of this type. We show that in both
BTW and Manna models, each grain moves like a rand
walker, starting at the site in which it was deposited, unti
falls off the boundaries. Using these features we show
the average avalanche size is the same for the two mod
Moreover, it is equal to the average path length of a rand
walker starting from a random site on the same lattice, u
it falls off the edge.

In order to demonstrate these properties we examine
avalanche size distribution of the Abelian sandpile mod
and the distribution of the path length of a random walker
finite square lattices. The average path length of a rand
walker on a lattice of sizeL is calculated exactly using a
method proposed by Walsh and Kozak@37,38#. The entire
distribution of the path lengths of random walkers starting
random sites on the finite lattice is also calculated usin
related method proposed by Soler@39#. The results are also
compared to direct numerical simulation of the random wa
The avalanche size distribution of the Abelian sandpile m
els is obtained from direct numerical simulations as well
from an exact formula introduced by Dhar@6#.
©2003 The American Physical Society02-1
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The paper is organized as follows. The sandpile mod
are described in Sec. II. The distributions of the path leng
of random walkers on finite lattices and their averages
studied in Sec. III. The connection between the sand
models and random walkers is examined in Sec. IV. T
simulations and results are given in Sec. V, followed by
discussion in Sec. VI and a summary in Sec. VII.

II. THE SANDPILE MODELS

Consider a sandpile model on ad-dimensional cubic lat-
tice of linear sizeL. Each sitei is assigned a dynamic var
able E( i) which represents some physical quantity such
energy, grain density, stress, etc. A configuration$E( i)% is
calledstableif for all sites E( i),Ec , whereEc is a thresh-
old value. The evolution between stable configurations is
the following rules.

~i! Adding energy. Given a stable configuration$E( j )% we
select a sitei at random and increaseE( i) by some amount
dE. When an unstable configuration is reached rule~ii ! is
applied.

~ii ! Relaxation~or toppling! rule. If E( i)> Ec , relaxation
takes place and energy is distributed in the following wa

E~ i!→E~ i!2(
e

DE~e!,

E~ i1e!→E~ i1e!1DE~e!, ~1!

wheree are a set of vectors from the sitei to some neighbors
As a result of the relaxation,E( i1e) for one or more of

the neighbors may reach or exceed the thresholdEc . The
relaxation rule is then applied until a stable configuration
obtained. The resulting sequence of topplings is an avalan
that propagates through the lattice.

Avalanches can be characterized by their size. The sis
of an avalanche is the total number of toppling events t
occurred during the course of the avalanche. In the mo
studied here the number of grains that topple from an
stable site isEc5(eDE(e). Throughout the rest of the pape
we will denote the avalanche size by

n5Ecs, ~2!

namely, by the number of hops of individual grains that ta
place during the avalanche. This will allow us to consid
models with different values ofEc on a common footing.

The avalanche size distribution is denoted byPL(n), n
50,1, . . . , namely, the probability of a randomly chose
avalanche to be of sizen. The normalization condition is
given by

(
n50

`

PL~n!51. ~3!

Numerical simulations show that the avalanche size
tribution for a lattice of sizeL has the power-law form

PL~n!;n2tL, n51,2, . . . . ~4!
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For some of the models the results fortL exhibit a significant
dependence on the system size. The critical exponentstL
turn out to depend on the vectorDE to be termedrelaxation
vector. For a square lattice with relaxation to nearest neig
bors it is of the formDE5(EN ,EE ,ES ,EW), where EN ,
EE , ES, andEW are the amounts transferred to the northe
eastern, southern, and western nearest neighbors, re
tively. The average avalanche size on a lattice of sizeL is
given by

^n&L5 (
n50

`

nPL~n!. ~5!

The sandpile models considered in this paper are conse
tive in the sense that the grains are conserved in the bulk
can leave the system only through the open boundar
When an avalanche reaches a boundary site, some ener
transferred out of the system~namely, dissipation takes plac
at the boundaries!. The critical state is reached spontaneou
in the limit in which the random addition of energy~or drive!
is infinitely slow ~practically it means that the next energ
unit is added only after the previous avalanche is complet!.
This state is characterized by a power-law distribution
avalanche sizes@Eq. ~4!#. In the critical state the added en
ergy dE per avalanche, is balanced, on an average, by
energy that flows out through the boundaries. Therefore,
average amount of energy leaving the system per avalan
is dE.

In the BTW model,Ec54, dE51, andDE5(1,1,1,1).
SinceDE is a constant, this model is clearly determinist
Note that sinceDE is independent ofE( i), if an active site
with E( i).Ec is toppled, it remains nonempty after the to
pling event had occurred. A useful way to analyze the BT
model is by its toppling matrixD, which for anL3L lattice
is a matrix of sizeL23L2. Consider a pair of sitesi
5( i x ,i y), j5( j x , j y) and denotei 5Li x1 i y , j 5L j x1 j y
where 0< i x ,i y , j x , j y<L21. The matrix elementD i , j
whereiÞ j is the number of grains given to sitej when site
i topples~up to a minus sign!. The number of grains leaving
site i in such an event is given by the diagonal elementD i ,i .
Therefore, the toppling matrix is

D i , j5H 4, i5 j

21, i and j are nearest-neighbor sites

0 otherwise.

~6!

Consider the toppling of a given sitei. It can be described
by

E~ j !→E~ j !2D i j , ~7!

for all sitesj .
In the class of stochastic sandpile models, introduced

Manna, a set of neighbors is randomly chosen for relaxa
@22# once a site becomes unstable. Such models can be s
fied by a set of relaxation vectors, each vector is assig
with a probability for its appearance. There are several m
els in this class. One of them is a two-state model withEc
52 and two relaxation vectors~1,0,1,0! and ~0,1,0,1! each
2-2
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one applied with a probability of 1/2@40#. Another two-state
model includes six relaxation vectors, namely,~1,1,0,0!,
~1,0,0,1!, ~0,1,1,0!, ~0,0,1,1!, ~1,0,1,0!, and ~0,1,0,1!, each
one applied with a probability of 1/6@26#. In this paper we
consider a two-state model in which each of the two gra
of an unstable site is toppled randomly to one of the fo
neighbors~with probability 1/4 to each direction!. There is
no correlation between the directions picked for these
grains. The set of relaxation vectors includes all the ten p
sible vectorsDE of integer components for whichEN1EE
1EW1ES52. Each of the six vectors of the previous mod
appears with probability 2/16, while each of the four vecto
~2,0,0,0!, ~0,2,0,0!, ~0,0,2,0!, and ~0,0,0,2! appears with
probability 1/16. This model will be called the unrestricte
two-state Manna model.

The average avalanche size^n& for the BTW model on a
lattice of sizeL was calculated exactly by Dhar@6#. He
showed that the matrix elementD i , j

21 represents the averag
number of toppling events taking place at sitej when a grain
starts an avalanche after being deposited at sitei. By sum-
ming all the elements ofD21, using the eigenvectors an
eigenvalues ofD @41# it was found that

^n&5
1

L2~L11!2 (
k,l

cot2ukcot2u l

sin2uk1sin2u l
, ~8!

where

um5
pm

2~L11!
, ~9!

for any integerm, and the summation overk,l is over all odd
integers 1<k,l<L. The dependence of̂n& on the system
size was found to bên&;L2. This analysis was recentl
extended to dissipative Abelian models@42#.

III. RANDOM WALKS ON FINITE LATTICES

Consider a random walker on a square lattice of sizeL.
The walker starts at a random initial sitei5( i x ,i y), where
0< i x ,i y<L21. At each step the walker has four possib
moves, to one of the sitesiR5( i x11,i y), iL5( i x21,i y), iU
5( i x ,i y11), and iD5( i x ,i y21), each picked with equa
probability. The boundaries are open, and thus a rand
walker starting at any site (i x ,i y) will eventually fall off the
edge@37,38#. The number of moves it will make depends o
the location of the initial site as well as on the particu
realization of the random moves generating the path of
given walker. Therefore, there is a probability distributi
pi(n), wheren51,2 . . . ,̀ , that a random walker starting a
site (i x ,i y) will fall off the edge aftern moves. We will first
calculate the average of this distribution given by

^ni&5 (
n51

`

npi~n!. ~10!

The boundary conditions are given by^ni&50 for sites be-
yond the edge of theL3L lattice, namely, those for which
i x521 or L, or i y521 or L. Since on its way to the bound
06610
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aries the walker must pass through at least one of the ne
neighbors of the sitei, there is a relation between̂ni& and
the corresponding averages for its nearest neighbors of
form

^ni&5 1
4 ~^niR&1^niL&1^niD&1^niU&!11. ~11!

This set ofL2 coupled linear equations can be written in
matrix form as

1
4 D^n&51, ~12!

where the matrixD is identical to the toppling matrix of the
BTW model, given in Eq.~6!. The vector̂ n& consists of the
L2 componentŝ n& i5^ni&, wherei5( i x ,i y) and i 5Li x1 i y
( i 50,1, . . . ,L221). The L2-dimensional vector1 is given
by 15(1,1, . . . ,1).

In order to reduce the number of equations we shall
the symmetry properties of the square lattice that has
horizontal, one vertical, and two diagonal reflection ax
Any two sites with the same symmetry properties are ca
sites of the same ‘‘type.’’ Due to the symmetry it is sufficie
to examine the sites in the triangle bounded by the vert
axis from the center upwards and by the diagonal axis fr
the center to the upper right corner~Fig. 1!. In this triangle
there is one site of each type. The number of sites in
triangle is

N5
~L11!~L13!

8
, ~13!

whenL is odd, and

N5
L~L12!

8
, ~14!

when L is even. TheN linear equations for̂n& i are of the
form

1
4 D^n&51, ~15!

whereD is anN3N matrix. The matrix elements ofD are

Di , j5H 42 f ~ i ,i !, i 5 j

2 f ~ i , j !, iÞ j ,
~16!

FIG. 1. The square lattice of size 333, in which the sites are
grouped and indexed according to the symmetry of their positio
The indexing starts from the central site and outwards.
2-3
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where f ( i , j ) is the number of sites of typej that are neares
neighbors to a site of typei. For L53, Eq. ~15! takes the
form

S 1 21 0

2
1

4
1 2

1

2

0 2
1

2
1
D S ^n&1

^n&2

^n&3

D 5S 1

1

1
D , ~17!

and its solution can be easily found to bên&
5(4.5,3.5,2.75). Now, having explicit values for the^n& i ’s,
the average path length^n& of a random walker that starts a
a random site on the 333 lattice is

^n&5
^n1&14^n2&14^n3&

9
53.277 . . . . ~18!

The probability distributionpi(n) of a walker starting at
site i to fall off the edge aftern moves can also be calculate
@39#. One can then averagepi(n) over all lattice sites and
obtain the probability distributionPL(n), n51,2, . . . ,that a
walker starting at a random site on the lattice will fall off th
edge aftern steps. This probability is given by

PL~n!5
1

L2 (
i

pi~n!. ~19!

Note that for the random-walk model,PL(n) is defined only
for n>1, because the random walker must make at least
move in order to fall off the edge. The normalization con
tion will thus take the form

(
n51

`

PL~n!51. ~20!

The moments of this distribution are given by

^nq&L5 (
n51

`

nqPL~n!. ~21!

The average path length~first moment! is given by Eq.~21!
with q51, the second moment byq52, and so on. The
calculation of pi(n) is done recursively starting from th
boundaries. The probability that a walker starting at siti
will fall off the edge aftern steps is given by

pi~n!5 1
4 @piR

~n21!1piL
~n21!1piU

~n21!1piD
~n21!#,

~22!

namely, it is the average over the four nearest neighbors
the probabilities that a walker starting in one of them will fa
off the edge aftern21 steps. The boundary conditions a
pi(n)50 wherei x521,L or i y521,L andn51,2, . . . ,̀ ,
reflecting the fact that these indices represent sites tha
already over the edge. The initial conditions for the recurs
procedure for the calculation ofpi(n), n51,2, . . . , are
given by pi(1)51/4 for all the edge sites, except for th
06610
ne
-

of

re
e

corner sites, for whichpi(1)51/2. For all other sitespi(1)
50. The distributionpi(n), n52, . . . , is calculated recur-
sively using Eq.~22! for all sites, starting atn52 and in-
creasingn by 1 after each scan of the lattice. The avera
path lengtĥ n& of a random walker starting at a random s
is then obtained from Eqs.~19! and ~21!.

IV. THE CONNECTION BETWEEN THE SANDPILE
MODELS AND RANDOM-WALK MODELS

Consider a grain deposited at a random site in the un
stricted two-state Manna model. It will initiate a small or
large avalanche and will typically stay on the lattice f
many subsequent avalanches until it will fall off the edg
Most of this time the grain is alone in its site. Whenever
will share the site with another grain, both of them w
topple randomly~and independently! to nearest-neighbo
sites. The path of the grain on the lattice is, in fact, a rand
walk since there is no correlation between one move to
other @43#. This path starts at the site into which the gra
was deposited and ends at the edge site through whic
leaves the system. The different walkers are uncorrela
since the directions chosen by the two grains that top
from an unstable site are independent. The only correlatio
between the times that different walkers make their rand
moves. This temporal correlation appears because two w
ers need to occupy the same site in order to move.

This property, that the path of each grain in the sandp
model is a random walker, is not limited to the unrestrict
two-state Manna model. It is a general property of t
conservative-Abelian models, in which the grains are d
crete entities. It is thus a common property of models t
belong to both the deterministic and stochastic universa
classes. Consider, for example, the BTW model. It is con
nient to consider the grains as distinguishable particles
naming each one of them according to the running num
representing the order of their deposition into the syste
When an unstable site topples, we will pick the grain th
entered this site first, and choose randomly one of the f
directions (N,E,S,W) for it to move. For the second grai
we will choose randomly among the three remaining dir
tions, and so on for the third and fourth grains. It is clear t
there is no correlation between the directions of consecu
moves of each grain and no bias. Therefore, each grain
lows a path of a random walker. Unlike the unrestricted tw
state Manna model, in the BTW model there is a correlat
between the directions of different grains that topple fro
the same site, since they cannot move in the same direc

Each avalanche in the sandpile models starts with a n
grain deposited randomly. Therefore, on an average, e
avalanche drops one grain off the edge. Since the gr
follow random-walker paths from the random initial site
an edge site, the average number of hops that take place
single avalanche must be equal to the average numbe
steps, which is required for a random walker deposited r
domly on the lattice to reach the edge. We thus conclude
the average avalanche size of a sandpile model on a lattic
size L is the same for the BTW and Manna models, a
2-4
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SANDPILE MODELS AND RANDOM WALKERS ON . . . PHYSICAL REVIEW E67, 066102 ~2003!
equal to the average path length of a random walker de
ited randomly on the same lattice.

V. SIMULATIONS AND RESULTS

To examine the connection between the random-w
model and the sandpile models on finite lattices, we h
performed numerical simulations of both systems. Dir
simulations of the random-walk model were performed o
square lattice of sizeL with open boundaries. In each run th
walker started at a random site on the lattice. The rand
walk path was generated until the walker fell off the edg
The path length, namely, the numbern of moves it made
from the initial site to the edge, was recorded. From t
data, the distribution of path lengthsPL(n) was generated
and its averagên&L was calculated. The average^n&L was
also calculated using the Walsh-Kozak method@37,38#. The
distribution PL(n) was also calculated using the Sol
method@39# and ^n&L was extracted from it. Direct simula
tions of the BTW and Manna models were performed, fro
which the avalanche size distributions were obtained. T
average avalanche size for each model was calculated
function of the lattice sizeL. The average avalanche size f
the BTW model was also calculated using Dhar’s form
@Eq. ~8!#. The values of^n& vs L obtained for both the
random-walk and sandpile models are shown in Fig. 2. T
all coincide perfectly, except for some slight fluctuations
the direct simulation data for the larger values ofL. This
confirms the connection between the random-walk and sa
pile models. Fittinĝ n&L vs L to a polynomial function we
obtain that̂ n&L5aL21bL, wherea50.14 andb50.56.

While the averages are found to be the same for the s
pile models and the random-walk models, the distributio
PL(n) turn out to be different. To calculate the distributio
PL(n) of the path lengths of random walkers starting fro
random sites on a square lattice of sizeL, we used the Sole

FIG. 2. The average avalanche size for the BTW and Ma
models, and the average length of the random-walk paths~starting
from random sites! on a finite square lattice with open boundarie
vs the lattice sizeL. For any value ofL, it is found that the average
avalanche sizes and the average path lengths are all equal.
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method@39#. The calculation was done for square lattices
sizesL532, 64, 128, 256, and 512. To obtain a scaling fun
tion we rescaledn for each system size by the average pa
length^n&L . The scaling functionP(n/^n&L)5^n&LPL(n) is
shown in Fig. 3 on a double logarithmic scale. The scal
function exhibits a linear range, up to an upper cutoff arou
n/^n&L51. The slope of the linear range turns out to
'21/2. This function can be considered in the framewo
of first passage problems of a random walk on a finite latt
@44#.

The avalanche size distributions for the BTW and Man
models were obtained from direct numerical simulations
lattice sizesL532, 64, 128, 256, and 512. The rescaled d
tribution functions are shown in Fig. 4~a! for the BTW model
and in Fig. 4~b! for the Manna model. In both cases the da
collapse is not complete, due to the finite size dependenc
the critical exponenttL . Fitting the data forL5512 to Eq.
~4! we obtain thattL51.1260.02 for the BTW model and
tL51.2760.02 for the Manna model, in agreement with pr
vious results@22,27,30#.

The first three moments of the distribution of path leng
of the random walk vsL are shown in Fig. 5. The result
were obtained both by direct simulation and by calculat
PL(n) using the Soler method@39#. Fitting these graphs to
power laws inL we find that^nq&L;L2q ~the slopes of the
best linear fits are 1.9860.04, 3.9760.06, and 5.9660.08
for q51, 2, and 3, respectively!.

For the sandpile models, in the large system limit, the fi
moment of the avalanche size distribution scales like^n&L
;L2. Higher moments are expected to scale like

^nq&L;Ls(q), ~23!

with s(q).2q for q.2. The first three moments of th
avalanches size distributions of the BTW and Manna mod

a

,

FIG. 3. Scaling function of the path-length distribution of
random walk on finite lattices of sizesL532, 64, 128, 256, and
512. Here,n is the walker length,̂n&L is its average, andP(n)L is
the probability to obtain a path of lengthn on a lattice of sizeL. The
five graphs coincide with each other. The slope in the linear rang
21/2, as expected for the random walk.
2-5
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vs L, are shown in Fig. 6. The slopes of the best linear fits
the BTW model ares(q)51.9860.02, 4.6860.04, and
7.5260.08 for q51, 2, and 3, respectively. The slopes
the best linear fits for the Manna model ares(q)51.97
60.02, 4.7360.04, and 7.4860.08 for q51, 2, and 3, re-
spectively. These linear fits were obtained for lattice size
the range 64<L<1024. The results for the first moment a
identical ~within the error bars! for the two models, and co
incide with the results for the random-walk model, and th
confirm the conclusions of the analysis above. Surprisin
the values ofs(q) for the BTW and Manna models ar
approximately the same~within the error bars!, also for q
52 and 3. This is in spite of the fact that the avalanche s
distributions of the two models are characterized by differ
exponentstL . This behavior has to do with deviations fro
the power-law behavior near the upper cutoffs of the dis

FIG. 4. The rescaled avalanche size distributions for the B
model~a! and for the Manna model~b! for lattice sizesL532, 64,
128, 256, and 512. It is observed that for the BTW model the sl
exhibits some dependence onL. The slope for the best fit obtaine
by linear regression for lattice size 512 corresponds totL51.12
60.02 for the BTW model, andtL51.2760.02 for the Manna
model.
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butions. The results for the higher moments are in agreem
with those presented in Refs.@30,45#.

VI. DISCUSSION

Power-law distributions were observed in a wide varie
of natural systems as well as in economic systems, comp
networks, linguistics, and other fields. Some examples

e

FIG. 5. The first three moments of the distribution of the pa
lengths of the random walk vs system size. The filled symbols
the results of direct simulations. The empty symbols are the res
of calculations using the Soler method. The slopes of the best lin
fits are 1.9860.04, 3.9760.06, and 5.9660.08, forq51, 2, and 3,
respectively.

FIG. 6. The first three moments of the avalanches sizes in
BTW and Manna models, vs system size. The slopes of the
linear fits for the BTW model are 1.9860.02, 4.6860.04, and
7.5260.08 for q51, 2, and 3, respectively. The slopes of the b
linear fits for the Manna model are 1.9760.02, 4.7360.04, and
7.4860.08 forq51, 2, and 3, respectively. The results for the fir
moment are the same for the two models and coincide with
random-walk model. The results for higher moments of the t
models are not identical, although the differences are small. T
both are very different from the random-walk results.
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clude the energy distribution between scales in turbule
@46#, the distribution of earthquake magnitudes@47#, the dis-
tribution of city populations@48,49#, the distribution of in-
come and wealth@50–53#, the distribution of the number o
links pointing to sites in the Internet@54,55#, and the distri-
bution of the frequency of appearance of words in texts@48#.
A common feature of such systems is that they consist o
large number of elementary degrees of freedom that inte
with each other in a complex way. Power-law distributio
typically appear when these interactions give rise to lo
range correlations with no characteristic length scale.

Consider a power-law distribution of the form

PL~n!5A~L !n2tL, ~24!

limited to the range betweennmin(L) and nmax(L). For sim-
plicity we will assume that the lower cutoff is fixed t
nmin(L)51. As in the case of the sandpile models, we w
assume that the upper cutoff is limited by the system sizL
and thatnmax(L)→` when L→`. The probability distribu-
tion PL(n) should satisfy the normalization condition

E
nmin(L)

nmax(L)

PL~n!dn51, ~25!

namely, A(L)5(12tL)/(nmax
12tL21). In order for A(L) to

converge to a finite nonzero value asL→`, the exponenttL
must satisfytL.1 in the infinite system limit. The first mo
ment of the distribution,

^n&L5E
nmin(L)

nmax(L)

nPL~n!dn, ~26!

thus takes the form

^n&L5
~12tL!@nmax~L !22tL21#

~22tL!@nmax~L !12tL21#
. ~27!

We observe that fortL.2 the first moment converges to
finite value in the infinite system limit. On the other hand, f
1,tL,2, the first moment̂ n&L diverges forL→`. We
thus obtain a connection between the behavior of the
moment of the distribution in the infinite system limit an
the range of values that the exponenttL can take.

For the sandpile models studied here the exponenttL is in
the range 1,tL,2, and indeed, the average avalanche s
diverges according tôn&5aL2 asL→`. The upper cutoff
nmax can be expressed as a function ofL andtL :

nmax5Fa~22tL!

tL21 G1/(22tL)

L2/(22tL). ~28!

Using this upper cutoff in the calculation of higher momen
we obtain that in the infinite system limit they will sca
according to Eq.~23! with

s~q!5
2~q112tL!

22tL
. ~29!
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Note that Eq.~29! predicts significantly different values o
s(q) for the BTW and Manna models, due to the differen
in the values oftL for the two models. On the other han
Fig. 6 shows nearly identical values ofs(q), q52,3 for the
two models. The fact that these two moments coincide se
to be due to the deviations from power-law behavior near
upper cutoffs. The effect of these deviations is significant
high moments.

Recently, multifractal scaling was observed in the av
lanche size distribution of the BTW model@29,56,57#. This
indicates that a finite size scaling analysis of the form of E
~24! is not sufficient for describing the scaling behavior
the BTW model, although it was found to apply in the ca
of the Manna model@29,56,57#.

ExponentstL in the range 1,tL,2 were observed em
pirically in the distribution of earthquake magnitudes. Ma
other systems exhibit values oftL in the range 2,tL,3. In
these systems the first moment is kept finite in the infin
system limit, while the second moment that characterizes
fluctuations in the system diverges. Consider, for exampl
directed graph model describing an Internet-like netwo
Each node in the graph has a fixed numberr of links pointing
outwards to other nodes. The graph is constructed such
the probability of each node to receive links from new
added nodes is proportional to the number of incoming lin
that it already has. For a network that reached a size oL
nodes, this process generates a power-law distribution of
number of incoming links among the nodes. In the result
network the total number of outgoing links must be equal
the total number of incoming links. Since each node har
outgoing links, the average number of incoming links p
node must bên&L5r , independent of the sizeL of the net-
work. Since the first moment of the distribution is kept finit
while the second moment diverges asL→`, the exponenttL
must be in the range 2,tL,3 in the infinite system limit.
The notable feature of the network system is that the aver
^n&L of the power-law distribution of the incoming links i
forced to remain constant and independent of the sys
size. Systems that have this feature are common. Other
amples include the distribution of the number of citations
scientific papers. Each citation is a directed link from
newer paper to an older one. While the distribution of t
number of outgoing links per paper is narrow, the distrib
tion of incoming links is broad, and resembles a power-l
distribution. Another example is the distribution of incom
and wealths in western societies, which were found to
hibit power-law behavior, at least in the high income secto
with exponents in the range 2,tL,3. Here the argument is
not as easy to make. However, one may argue that the a
age of these distributions must be connected to the ave
productivity per worker. This productivity remains finit
when the size of the economy increases.

VII. SUMMARY AND CONCLUSIONS

Abelian sandpile models~both deterministic and stochas
tic! and random-walk models have been studied on fin
2-7
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square lattices with open boundaries. The avalanche
distributions of the sandpile models, as well as the distri
tions of the lengths of the random-walk paths were cal
lated using various methods. It was shown that, due to
conservation laws, the averages^n& of the avalanche size
distributions of the deterministic and stochastic models
the same, and that they are both equal to the average le
dl

ev

h

ev

et

hy

tt
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of the random-walk paths starting from random sites on
same lattice.
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@20# D.V. Ktitarev, S. Lübeck, P. Grassberger, and V.B. Priezzh

Phys. Rev. E61, 81 ~2000!.
@21# P. Bak,How Nature Works~Springer-Verlag, New York, 1996!.
@22# S.S. Manna, J. Phys. A24, L363 ~1991!.
@23# L. Pietronero, A. Vespignani, and S. Zapperi, Phys. Rev. L

72, 1690~1994!.
@24# A. Vespignani, S. Zapperi, and L. Pietronero, Phys. Rev. E51,

1711 ~1995!.
@25# A. Chessa, H.E. Stanley, A. Vespignani, and S. Zapperi, P

Rev. E59, R12 ~1999!.
@26# A. Ben-Hur and O. Biham, Phys. Rev. E53, R1317~1996!.
@27# E. Milshtein, O. Biham, and S. Solomon, Phys. Rev. E58, 303

~1998!.
@28# O. Biham, E. Milshtein, and O. Malcai, Phys. Rev. E63,

061309~2001!.
@29# C. Tebaldi, M. De Menech, and A.L. Stella, Phys. Rev. Le

83, 3952~1999!.
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